Justified Representation in Approval-Based Committee Voting

نویسندگان

  • Haris Aziz
  • Toby Walsh
چکیده

We consider approval-based committee voting, i.e. the setting where each voter approves a subset of candidates, and these votes are then used to select a fixedsize set of winners (committee). We propose a natural axiom for this setting, which we call justified representation (JR). This axiom requires that if a large enough group of voters exhibits agreement by supporting the same candidate, then at least one voter in this group has an approved candidate in the winning committee. We show that for every list of ballots it is possible to select a committee that provides JR. However, it turns out that several prominent approval-based voting rules may fail to output such a committee. In particular, while Proportional Approval Voting (PAV) always outputs a committee that provides JR, Reweighted Approval Voting (RAV), a tractable approximation to PAV, does not have this property. We then introduce a stronger version of the JR axiom, which we call extended justified representation (EJR), and show that PAV satisfies EJR, while other rules we consider do not; indeed, EJR can be used to characterize PAV within the class of weighted PAV rules. We also consider several other questions related to JR and EJR, including the relationship between JR/EJR and core stability, and the complexity of the associated algorithmic problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-committee Approval Voting and Generalised Justified Representation Axioms

Social choice is replete with various settings including single-winner voting, multi-winner voting, probabilistic voting, multiple referenda, and public decision making. We study a general model of social choice called Sub-Committee Voting (SCV) that simultaneously generalizes these settings. We then focus on sub-committee voting with approvals and propose extensions of the justified representa...

متن کامل

ar X iv : 1 71 1 . 06 03 0 v 1 [ cs . G T ] 1 6 N ov 2 01 7 Sub - committee Approval Voting and Generalised Justified Representation Axioms

Social choice is replete with various settings including single-winner voting, multi-winner voting, probabilistic voting, multiple referenda, and public decision making. We study a general model of social choice called Sub-Committee Voting (SCV) that simultaneously generalizes these settings. We then focus on sub-committee voting with approvals and propose extensions of the justified representa...

متن کامل

Social Choice and Welfare Justified Representation in Approval-Based Committee Voting

We consider approval-based committee voting, i.e. the setting where each voter approves a subset of candidates, and these votes are then used to select a fixedsize set of winners (committee). We propose a natural axiom for this setting, which we call justified representation (JR). This axiom requires that if a large enough group of voters exhibits agreement by supporting the same candidate, the...

متن کامل

Monotonicity axioms in approval-based multi-winner voting rules

In this paper we study several monotonicity axioms in approval-based multi-winner voting rules. We consider monotonicity with respect to the support received by the winners and also monotonicity in the size of the committee. Monotonicity with respect to the support is studied when the set of voters does not change and when new voters enter the election. For each of these two cases we consider a...

متن کامل

Proportional Justified Representation

The goal of multi-winner elections is to choose a fixed-size committee based on voters’ preferences. An important concern in this setting is representation: large groups of voters with cohesive preferences should be adequately represented by the election winners. Recently, Aziz et al. (2015a; 2017) proposed two axioms that aim to capture this idea: justified representation (JR) and its strength...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014